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Solutions 

We have introduced a new approach called the method of auxil- 
iary mapping to deal with elliptic boundary value problems with 
singularities. In this paper this method is extended so that it can 
handle the plane elasticity problems containing singularities. In or- 
der to show the effectiveness, this method is compared with the 
conventional approach in the framework of the p-version of the 
finite element method. Moreover, it is demonstrated that this 
method yields a better solution for those elasticity problems con- 
taining strong singularities than does the h-p version of the finite 
element method. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

In [8, 30], we introduce a new approach called the method 
of auxiliary mapping (MAM), to deal with domain singularity 
and interface singularity, which arise in such elliptic boundary 
value problems as steady state heat transfer. In this paper, this 
approach is extended for plane elasticity problems containing 
singularities. 

There are three versions of the finite element method: the h- 
version, the p-version, and the h-p version. The h-version [13, 
35] is the standard one, where the degree p of the elements is 
fixed, usually at a low level, typically with p = 1, 2, or 3 and 
the accuracy is achieved by properly refining the mesh. The p- 
version [10, 12, 36], in contrast, fixes the mesh and achieves 
better accuracy by increasing the degree p of the elements 
uniformly or selectively. The h-p version [4-5, 11, 16-21] is 
a combination of both. In this paper, we are concerned with 
the p-version of the finite element method. 

In the theory and practice of the finite element method, much 
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work has been done to design special approaches to deal with 
elasticity problems containing singularities [25, 32, 33, 38]. 
Singularities occur when the solution domain has corners, 
abrupt changes in boundary data, or consists of two or more 
materials. These singularities are called a corner singularity [9, 
15, 27, 34], a boundary data singularity [29, 37], and an interface 
singularity [23, 26, 29, 31], respectively. 

In an effort to provide accurate and economical solutions, 
many different approaches to deal with singularity in elasticity 
problems have been attempted over the years. Basically there 
are three ways the problem is approached: mesh refinement [7, 
11, 16-20, 35]; use of special singular elements [1, 2, 22]; and 
use of (nonlocal) special singular functions [24]. Expanding 
the trial space by adding special singular (local or global) 
functions which mimic the singularities can lead to a more 
accurate solution, but more problems will be generated, espe- 
cially in computer coding. Moreover, one must know the struc- 
ture of the eigenvalues corresponding to the singular points in 
order to choose proper singular functions. The most popular 
approach is the mesh refinement, but its success depends on a 
proper choice of mesh and it also requires longer computing 
time. Moreover, when the singularity is very strong, as in Exam- 
ple 5.11, this approach cannot give any acceptable results. 

In this paper, the MAM introduced in [8, 30] will be modified 
so that it can efficiently handle the singularities which arise in 
plane elasticity problems. It will be shown that this new ap- 
proach yields far better results for elasticity problems containing 
singularities than do conventional approaches at virtually no 
extra cost. Moreover, this method gives a reasonable solution 
for those elasticity problems which even can not be solved by 
using the h-p version of the finite element method. 

This paper is organized as follows: The notations and the 
model problems to work with are described in Section 2. In 
Section 3, the structure of the comer singularity and basic 
lemmas are introduced. In Section 4, the MAM is explained 
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in the context of plane elasticity, and the improvement of  error 
bounds by MAM is presented. Various numerical results to 
demonstrate effectiveness of  our method are given in Section 
5. These include an especially remarkable success in Examples 
5.1 and 5.1I and MAM's handling of interface singularities 
caused by an abrupt change in material properties, Finally, the 
concluding remarks are given in Section 6. 

2. P R E L I M I N A R Y  

2.1.  T h e  N o t a t i o n  

For ~ C ~t 2 a polygonal domain with boundary 0~,  we let 
/-a(O) = H°(l~), Hk(O), H~(O), k --> 0 integer, denote the usual 
Sobolev spaces. For u ~ Hk(l~) we denote by I/ull,.o and lulk.n, 
the usual norm and semi-norm, respectively. 

In elasticity, the state variable is the displacement vector 
denoted by {u} = {Ux(X, y), u~.(x, y)}r and the flux is the stress 
tensor denoted by {o "(")} = "~("),T(.),'r(u)~ T Let {e (")} = ~ t ] X  * ~ ) '  , - - x y J  • 

{e(.), e~), y~)}r be the strain tensor. Then the strain-displacement 
and the stress-strain relations are given by 

{e (")} = [D]{u}, {o X"l} = [El{e("l}, (1) 

respectively, where [D] is the differential operator matrix, 

m 

0 
- -  0 
Ox 

0 
[ D ] =  0 ~yy 

0 a 

where E is the modulus of elasticity and v (0 -< 
Poisson's ratio. 

The equilibrium equations of elasticity are 

v < ~ i s  

[DIT{o'("~}(X, y) + {f}(x, y) = 0, (X, y) E 1~, (3) 

where {f} = {fi(x, y),f.(x, y)}T is the vector of internal sources 
representing the body force per unit area. 

2.2. T H E  M O D E L  P R O B L E M  

Introducing the relations (1) into (3), the equilibrium equa- 
tions can be expressed in terms of the displacement vector {u}. 
Consider the system of the partial differential equations in terms 
of the displacement vector, 

[DIT[EI[D]{u}(x, y) + {f}(x, y) = 0, (x, y) (E ~,  (4) 

subject to the boundary conditions, 

[UJ{o-('°}(s) = {?}(s) = {L(s), L(s)}L s E r',, (5) 

{u}(s) = {ff}(s) = {gx(S), fix(s)} T, s E F 2, (6) 

where F x U F 2 = 0~,  {nx, ny} r is a unit vector normal to the 
boundary O f / o f  the domain ~ ,  and 

[:0 .:] 
IN] = 

n>, n 

Let Hb(~)  = {{w} = {wx, Wy} E [H'(~)12:{w} = 0 on F2}. 
Then, as usual, the variational form of (4)-(6) is: find the vector 
{u} such that u,, Uy E HI(O), {u} = {if} on F 2, and 

and [E] = [E j ,  1 -< i, j -< 3, is the symmetric positive definite 
matrix of material constants. For an isotropic elastic body, [El 
is either where 

~({u}, {v}) = ~({v}) for all {v} E Hb(12), (7) 

1 - v --------5 or ~" ~r + 2/x , 

0 0 0 

depending on whether the case is plane stress or plane strain, 
respectively. Here 

E uE 
/x - 2(1 + v)' ~" - (1 + v)(1 - 2v) '  (2) 

({u}, {v}) = fn  ([DI{v})T[EI([D]{u}) dx dy, (8) 

= f ,  ay + 3% as. (9)  

By the strain energy of  the displacement vector {u} we mean 
~({u})  = ~ ( { u } ,  {u}). 

The finite element approximation of  the solution of  (7) is to 
construct approximations of  each component of  the vector {u}. 
We denote the basis functions defined on ~ by ~i(x, y), i = 
1, 2 ..... n. The components of  the displacement vector in term 
of basis functions ~ i  are of  the form 
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ux(x, y)  = ~, ai~i(x, y) 
i=l  

u~,(x, y) = 2 a,+i~i(x, y), 
i=1 

where ai (i = 1, 2 ..... 2n) are called the amplitudes of the basis 
functions ~i. Let 

{ . , , - { < y , }  i - 1 2  ..... n ,lO, 

a r p(r,O) " ~  

FIG. 3.1. The vicinity of a singularity with wedge angle ~. 

I l {~tzi}:l%ifi_n(X,y)l[.j i = n + l , n + 2  ..... 2n. 

Then {u} can be written as 

2., 

{u} = E a,{*,}. 
i=1 

(11) 

3.1. The Behavior  of  a Solution in the Vicinity  of a 
Nonsmooth  Boundary 

Let us consider the equations of elasticity (4) in the vicinity 
of a comer shown in Fig. 3.1. When the body force is neglected, 
in the case of plane strain, the equations of elasticity in the 
polar coordinates system can be written as 

Moreover, we have the following. 

LEMMA 2.1. The bilinear form ~({u}, {v}) on an element 
e becomes 

( ( +  2 / ~ ) ~ [  Or + r ~  + r J  

l a [ a_U_Uo 1 a u r + ~ }  = 0  ' (12) 
- U T g a t  Or r <90 

LE3, E33] 

f (V%)T[ E3' e" 1 
k&3 E22J (WI'/) 

[El3 e,2] 
f" (V%)7 [_E33 E32J (V%) 

f" (v%)T LE2, E23J (Vxlzi) 

/f{v} = {w,, o} T, {.} = {%, 0} 7, 

,y{v} = {o,*,}7, {u} = {o, %}7, 

¢{v} = {,~,, o} T, {.} = {o, %}7, 

g{v} = {o, .,}T, {.} = {%, o}T. 

3. THE CORNER SINGULARITIES 

The accuracy of the finite element approximation depends 
on the regularity of the true solution [6]. In the presence of 
singularity the solution of (4)-(6) has a low regularity. In this 
section the structure of the singularity due to nonsmoothness 
of the domain will be investigated. For this purpose the equa- 
tions of elasticity (4) will be localized by restricting (4) to a 
neighborhood of a singularity of the domain [I. 

($+ 2 / ~ ) r ~ ( O r  r 0--0 + 

o  ou, 10Ur 
+ p ~ r l a  r rO0 + =0.  (13) 

The radial and tangential stresses on the wedge surfaces are 

~(Ou, _~) (lOuo+_~) 
°'°°= \Or +lOUO+r O0 +2/z \rO-O ' (14) 

(OUo + I OUr ;0) (15) 
mo= tZ k Or r O0 " 

Let us consider the solutions of (12) and (13) in the form 

Ur = rAf( O), (16) 

uo = rAg(O). (17) 

Substitution of these forms into (12) and (13) gives a system 



196  OH AND BABUSKA 

of ordinary differential equations in f and g. One can see that 
the solution of this system has the form 

0.20 

j 0.15 
f =  A, cos[(1 + A)0] + A2 sin[(1 + A)0] ,~ 

+ A3 cos[(1 - A)0] + A4 sin[(1 - A)0], (18) ~ 
I -  
~ 0 .10 

g = A2 cos[(1 + h)0] - A] sin[(1 + h)O] 

-t- V/A4 c o s [ ( 1  - A)0]  - V/A3 sin[(1 - A)0], (19) ~ wl 

0.05 

where 77 = (3 + h - 4u)/(3 - A - 4u). Then displacements 
and stresses in the vicinity of the comer  will be expressed as 

(20) 

r-Au~ = A, cos[(1 + h)0] + A2 sin[(1 + h)0] 

q- A 3 cos[(l  - h)0] + A4 sin[(1 - h)0], 

r-Au8 = A2 cos[(1 + A)0] - Aj sin[(1 + h)0] 

o 
O. 

"o, 

"o 
"o 

"0 
~O 

" o  
o 

o 

75 B0 

" o  
o 
~o 

~o 
"o 

~0 
"0 

"0 
"0 

%o , , , 1 , ,  
85 90 

WEDGE ANGLE(ALPHA) 

FIG.  3.2. The smallest  eigenvalue versus the wedge angle oL when the 

normal displacement and tangential traction are zero along the boundary sur- 

faces, 0 = ___oc 

+ V/A4 cos[(1 - A)0] - V/A 3 sin[(1 - A)0], (21) 

tx-trl-A0-oo = - 2 h A j  cos[(1 + A)0] - 2hA2 sin[(1 + h)0] 

- -  (1 + A)(1 - V/)A3 c o s [ ( 1  - A)0 ]  

- (1 + ,~)(1 - V/)A4 sin[(1 - A)0], (22) 

tz-lrl-A0-ro = -2AAI sin[(1 + A)0] + 2 ~ A  2 cos[(1 + h)O] 

- -  (1 - -  A)(1  --  v/)A3 sin[(1 - h ) 0 ]  

- (1 - h)(1 - T/)A4 c o s [ ( l  --  A)0 ] .  (23) 

From now on, " the  wedge angle a "  stands for " the  wedge 
angle 2 a . "  Let us label the boundary conditions along the 
boundaries 0 = a and 0 = - o r  of  a wedge-shaped region 
bounded by radii 0 = +o~, as shown in Fig. 3.1, as 

B C I :  Uo = Ur = 0,  

BC2:0"80 = "1%0 = 0,  

BC3: uo = "1%o = O. 

In order to determine the eigenvalues h and the constants 
A~, A2, A3, A4, for various boundary conditions on the boundary 
surfaces 0 = _+or, these boundary conditions are applied to the 
Eqs. (20)-(23).  Then because of  the given boundary conditions, 
we obtain the following trigonometric equations to determine 
the eigenvalues h (see, [25, 32] for details), 

s in(2ha)  = 

sinZ(2ha) = 

s in(4ha)  = 

s in(4ha)  = 

_+sin(2a) 

ifBC3-BC3 is imposed, 

(1 + A)2/4A - h 2 sin2(2a)/C 

ifBC]-BC2 is imposed, 

- A sin(4o0 

if  BC2-BC3 is imposed, 

A sin(4a)/C 

if BG-BC3 is imposed, 

where C = 3 - 4/v  for plane strain and C = (3 - u)/(1 + 
u) for the plane stress and BC~-BCj means that BC, is on one 
side and BC~ is on the other side of  the boundary surfaces, 

0 = -----c~. 
These trigonometric equations could have complex roots as 

well as real roots. For various wedge angles a and for various 
boundary conditions, min{Re(A)} are computed in (Section 3.8 
of  [32]). In particular, if the condition BC3 is imposed on both 
of  0 = __+or, 0 < ot < 90% then the smallest real eigenvalue h 
(min{Re(h)}) can be arbitrarily small as ot goes to 90 °. Figure 
3.2 shows the smallest real root h of  the trigonometric equation: 
sin 2 h a  = sin 2c~, for 75 ° -< a < 90 ° . In such cases, the 
singularities are too strong to obtain any reasonable approxima- 
tions by standard numerical approaches. These cases will be 
elaborated in Example 5.II. 

s in(2ha)  = ---h sin(2oO/C 

i fBG-BCI  is imposed, 

s in(2ha)  = ---h sin(2a) 

if  BC2-BC2 is imposed, 

3.2. The Computation of the Bilinear form on the 
Regions Transformed by Auxiliary Mappings 

Now we consider an auxiliary mapping which will be used 
to describe our new approach to deal with elasticity problems 
containing singularities. Let z = x + iy and ~" = s c + iv/. Let 
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S = {(r, 0): 0 < r < R, a <: 0 < b}, (24) 

S* = {(r*, 0"): 0 < r* <-- R l/t~, al/3 <- O* <-- bl/3} (25) 

be two circular sectors in the z-plane and the st-plane, respec- 
tively. Suppose q~' : S* ---> S is the conformal mapping defined by 

z = q~(s r) = (~ (26) 

and let ~b be the inverse function of  q:;  then the determinants 
of their Jacobians are 

1 r2._~l;~ ' (27) [J(@)l =/32(r*) :`~-'), [s(q~/I =/~ 

{/~r, {/~y}T along parts of  the boundary aS of  S has the same 
effect as constraining the stiffness matrices obtained by the 
right-hand side of Lemma 3.1 by using the boundary conditions 
{ti~ o q~t~, g~. o ~}T along the corresponding boundaries of S*. 

4. THE METHOD OF AUXILIARY MAPPING: A NEW 
APPROACH TO DEAL WITH SINGULARITIES 

4.1. Description and Implementation of the Method 

Overall structure of  our method is as follows. From the 
arguments given in Section 2.1, if no body forces are present, 
then in a neighborhood Sp of a singular point P, each component 
of the displacement vector can be written as 

respectively. We denote the shifted function onto S* of a func- 
tion f :  S ~ R by the conformal mapping ~po by f = f o q:~. 

The following lemma was proved in [30] and it will play a 
key role in the MAM. 

LEMMA 3.1. For u, v ~ H~(S), we have 

fs(VU)T[a" a ' z l v v d x d y  
k a2j a22A 

= fs (va: [ q'' q'21vOWgd , 
L q21 q22_1 

(28) 

where 

t = (1 - / 3 )0*  

q,~ = a,t cos 2 t + a22 sin z t - (a2, + a~2) sin t cos t 

q:. =(a~ - av.) sin t cos t - a2~ sin 2 t + a~2 cos 2 t 

q2~ = (a,~ - a22) sin t cos t - a~2 sin -~ t + a2~ cos 2 t 

qu = au sin 2 t + a_n cos 2 t + (a,2 + a2,) sin tcos  t, 

and (r*, 0") represents the polar coordinates of points in S*. 
For v E H'(S) and f E H°(S), we have 

fs  f (x ,  y)v(x,  y) dx dy 

= fs*/32(~2 + ~72)~-~(~, ~7)0(~, ~7) d~drl. 
(29) 

Remark3.2. (1) From Lemma 2.1, the bilinear form ~({q~;}, 
{Wj}) for the basis vector functions has the same form as the 
left-hand side of  the integrals in Lemma 3.1. Thus, the local 
stiffness matrices on S by the basis vector functions (10)-(11) 
are the same as the local stiffness matrices on S* by the mapped 
basis vector, {~i} = {~/} o ~ .  

(2) Constraining the stiffness matrices on the elements in S 
due to the non-homogeneous essential boundary conditions 

Q(P) 

up(r, O) = ~ K f  j(r)Gj(O) + wo,e)(r, 0). (30/ 
1=1 

Here (r, 0) are the polar coordinates with respect to the singular 
point P. The function G~(O) is analytic up to the boundary of 
Se and F;(r) = Re(rAp, logO(r)) or Im(rAp, logffr)), where p = 0, 
except for some special angles. The eigenvalues Aej are in 
general complex numbers with positive real parts and Re(Apj) --< 
Re(Ae;+~). Fj(r), Gj(O) depend on the interior (wedge) angle a;  
Kj are stress intensity factors, wQ~e~ is smoother than the first 
term on the right-hand side of (30). Q(P) is a positive integer 
and Re(AQ~p)) < 1. Let A~rl be the smallest real number of Re(Apj) 
and suppose Ag~b < 1. If we let/3 = 1/A~ r), and (r*, 0*) denotes 
the polar coordinate system on S~' centered at P*, then 

Q(P) 

fie(r*, 0") = ~ K f  ;((r*)¢)@(/30 *) + wo, v,((r*)°,/30*) (31) 
j=l 

and/3A~ ) -> 1 fo r j  = 1 ..... Q(P). Therefore tip(r*, 0") = (ue ° 

q~)(r*, 0") is in Hm(S~), m > 2. 
Thus, on S~', the standard finite element method could yield 

a good approximation of fie in H~(S~). Since our auxiliary 
mappings are conforming and the mapping sizes/3 are assumed 
to be > 1, the H~-norm is preserved under the transformation 
by the auxiliary mapping. Thus, approximating fie in H'(S~) 
by the standard finite element basis functions defined on S# 
has the same effect as approximating up on Se in H'(Sp) by 
using singular basis functions on Se constructed through the 
auxiliary mapping q:.  However, the novelty of our method lies 
in never constructing such singular basis functions. 

We now describe our method, the MAM. Suppose the exact 
solution {u} has singularities at P~, P2 ..... PM. In what follows, 
u denotes the displacements ux and uy. In this case, our method 
goes as follows: 

Step 1: Determination of  the singular regions. At each sin- 
gular point Pq, const ruct  a neighborhood of  the singular point 
Pq, a sector Sq centered at Pq. Namely, 
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Sq 

0=0 

, @=O~q 

7 
q/I~q 

q 

0"=0 

I I 
r i/~q q 

FIG. 4.1. A singular neighborhood Sq of a singular point P0 and its mapped 
domain S* under the mapping q~,. The scheme g*  on S* and the corresponding 
mesh ~o on S 0. 

Sq = {(r, 0)'0 <-- r <-- Rq} N 12, 

where (r, 0) are the polar coordinates centered at Pq. Our method 
is not sensitive to the size of the radius Rq, p r o v i d e d  Rq is 
chosen small enough so that Sq is a circular sector in 1~ and any 
two different neighborhoods of two singularities are disjoint. Rq 
is usually selected to be --<1. 

Step 2: Selection of auxiliary mappings. Suppose A~'/ is 
min{Re(Aqj)}, where Aqj are the eigenvalues of the singularity 
at Pq. Then the mapping sizes of auxiliary mappings are selected 
as follows: 

Step 4: Computation of stiffness matrix and load vector. 
In computing local stiffness matrices and local load vectors, 

• Use the standard elemental mapping @, for the elements 
e in the nonsingular region 120 = f~\UqM=, Sq. 

• Use the standard elemental mappings qb: for the ele- 
ments e in the singular regions Uq~ Sq; in other words, local 
stiffness matrices and load vectors on the element e in the 
singular region are replaced by those computed on the elements 
e .  = (~o°)-'(e) by using the right-hand sides of Eqs. (28) and 
(29). 

Let CI)e s denote the special elemental mapping from 12~, onto 
e E ~-q defined by ~s = q~, o qb:. We will call this special 
elemental mapping @s the singular elemental mapping. 

Remark 4.1. (1) If ~b s is used as the elemental mapping on 
the element e in a singular region Sq then the basis functions 
constructed through qb s will mimic the original singularity on Sq. 

(2) Suppose el E ~0, e2 E U~-q, and 7 = el n e2 = {(r0, 0) : 
a --< 0 --< b}. Then the conformal mapping (q~)-~ is linear on 
the closed interval [a, b]; therefore, the basis functions con- 
structed by using the usual elemental mapping qb for e C 120 
and the singular elemental mapping qbs for e C USq are continu- 
ous along their common edges. 

Let .N'~ be the standard shape functions on 12,,, N*  = N~ o 
qbTJ and Nj = Njo (dps)-L Then Njo qgs = 3/'*. Hence, from 
Lemma 2.1, we have 

f f VX,[ao](V~y~= f f V~*[q,A(V~*) ~ dsC (33) 

/3 ={lq~?, ifA~q?<l ' 

t 1, otherwise. 

(32) 

Now the auxiliary mapping ~0 :S* ~ Sq is defined by z = 
q~,(0 = ~0,, a conformal mapping from the ~'-plane to the z- 
plane. 

Step 3: Triangulation of ~ .  For each Sq, generate a curvilin- 
ear triangulation ~-q of Sq as shown in Fig. 4.1. Then construct 
a triangulation ~- on 12 such that ~[s~ = ~-q. Let ~-* be the 
image of ~-q under ( ~ , ) - '  (see Fig. 4.1). 

For e* E ~'* (e ~ ~-0 = ~-~ U ~'q), @,. (~,) is the usual 
elemental mapping from the standard element 12,, (which is 
either the reference triangle or rectangle depending on whether 
e* (e) is a triangular or a rectangular element) onto curvilinear 
elements e* (e), respectively. Since we allow circular arcs as 
sides of elements, the elemental mappings could be of the 
blending type [14] as those in Chapter 6 of [36] and satisfy 
the usual technical conditions [4, 20] that lead to conforming 
finite elements. 

f f: c ax= f f:lJ(:)lf   de. (34) 

For the elements e in the singular regions, instead of computing 
the left-hand sides of (33)-(34) involving singular shape func- 
tions, we compute the right-hand sides of the equations for the 
local stiffness matrix and load vector on the elements e*. Let 
us note that from Lemma 3.1 the coefficient qu are not singular. 
Moreover, if/3 is chosen to be an integer >2,  the integrand of 
the left-hand side of (34) is as smooth as f. 

Thus, the computer implementation of our method is quite 
simple since any existing finite element code can be used for 
the computation of the right-hand sides without any alterations. 
Indeed, in MAM, unlike other singular function approaches, 
the banded structure of the resulting stiffness matrix is not lost 
and no severe problem with ill conditioning will occur. 

Let Vp = {{w} = (wj, w2) ~ H~(12):w;],o ~e(w;],o qb s) is a 
polynomial of degree p on 12,, for all elements e in 120 (e in 
UqM=l Sq)}, where 12,, is the standard triangle, T, or the standard 
rectangle, Q, according to whether e is a triangular element or 
a rectangular element. Then the p-oersion ofthefinite element 
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method in our context is as follows: Find an element {ue} 
Vp such that 

~({u;}, {v}) = ~({v}) for all {v} ~ Vp. (35) 

4.3. A 

Suppose ~ is the inverse mapping of the auxiliary mapping 
<pt~: S* ---> S, defined by (26), and j(~pt~) = O(x~, x2)lO(~, ~2) 
denotes the Jacobian matrix of ~ .  Then [J(q0 ° q~l" J(q~) = 
I and, hence, 

The dimension of Vp will be denoted by Np and will be called 
the degree of freedom(DOF). Let us note that in the p-version 
of the finite element method the triangulation of f~ is fixed and 
only the degree p of the basis polynomials is increased. 

If {u~x} is the solution of (7) then 

II{uA - = min II{w} - 
I,,')e v e 

(36) 

where II{w}ll  = ~({w} ,  {w})is the energy norm. 

4.2. The Rate of  Convergence 

Let 120 and Sq be the same as those in the preceding argument. 
Suppose u,xln ° E H"0(f~o), u~.,.[s , E H"~(Sq), Vo > 2, Vq < 2, 1 < 
q --< M, and if A~ = min{Re(Aqj)} < 1, then our method with 
auxiliary mapping ~o~, flq = 1/A~? will greatly reduce the inten- 
sity of the singularity at P~. Therefore, &.,. = u~xls o q~ E 
H~(S*) and v* > 2, which is larger than v~. 

By using the inequality (see [30] for details), 

[j(cp)l-t = J(~b) o C-  (38) 

Moreover, 

J(@ = J ( ~ ) o  ¢p~ 

'nt'<t° 1 
L in (;-J) o cos ( -J)0J 

= ~ ( r . ) , _ ~ [ c o s ( l - f l ) O *  - s i n ( l - f l ) 8 * ]  

Lsin(1 /3)0* cos(1 - / 3 ) 0 *  J" 

o ~o~ 

(39) 

Let us recall the singular elemental mapping for an element 
e is defined by 

qbS= ~ o qb: E----~ e, 

Ilvll,.s II011,,., 

the following theorem was proved in ([30]). 

THEOREM 3.1. Suppose u~ ~,'''~M) is the finite element solu- 
tion, on a quasi uniform mesh, obtained by employing the 
method of auxiliary mapping with the auxiliary mapping q~, 
on each singular region Sq in the framework of the p-version 
of the finite element method. Then we have 

F IlUe&.,o Ila,&;.Sqq 
Ilu'.', - u & °  <- L Co ~ + q=,~ C q ~ J ,  (37) 

where Np is the degree of freedom and, for each q, 0 <-- q <- 
M, Cq is independent of Np. 

4.3. Computat ion of  Strains and Stress 

The strains are computed from the strain-displacement rela- 
tionships and the stresses are computed directly from the strain- 
stress relationships. However,  in MAM, those computations in 
the singular regions are different from the standard approach. 

where ~o:e* ~ e is the auxiliary mapping defined by z = s c~ 
and • : E--* e* is the standard elemental mapping. Now we have 

[ j (~s) ] - i  = [J(~oo ~ ) ] - '  

= jC[¢o~]-t)oCq~o ~ )  

= [ j ( ~ - '  o ~o-t)] o (¢po qb) 

= [(j(¢)-~) o ¢p-~). j(¢p-')] o ( ~ o ~ )  

= {(([J(~)]- '  ° qb-')o ~p-') 

× ([J(~o)]-~o~o-')}o(~oo¢ ') by 

= ([J(qb)]-~). ( [J (~)] - '  o ~ )  

(38) 

and, hence, 

[ j (~s) r ] - ,  = ([j(~p)]-, o ~b)r. ([J(dp)]-l)z 
(4O) 

= ([j((p)]-, o qb)T. ( [ j (¢) ] r ) - , .  

Suppose P = (&, x2) is a point in an element e C ~2 and let 
¢) : E ---> e be the elemental mapping. Then the strains at P are 
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{e~.), e~,,, y!~)}r(p) = [D]{u,, u2}(P) 

+ 

Vxul(P) + Vxu2(P) 

[J (~I,) T]-~(~) ~] a,VdV,(P) 
l= I 

(-2, -2) [i i] 
where ~ ( P )  = P, V~ = (OlOxj, 310x2) T and V e = (0/0sol, 0/3~2) T. 

Suppose e is an element in the singular region on which 
MAM is applied, then [J(~b)r] -~ is replaced by [J(qbs) T ]-i and 
it follows from (39) and (40) that 

(-2, 2) 

(-2, O) 

(0, 2) 

(o, -2) 

FIG. 5.1. The scheme of the domain ~ and Mesh I. 

(2, 2) 

(2, o) 

(2,-2) 

00; = ~(~Jl - 00(2)) 2 + (o't2) - 00c31) 2 + (00c3) - ~))2]. 

[J((I)S)T]-I = ([J(qo)]-I o qS)T. ([J(qb)]-l)r 

= ~ ( r , ) , - a  [ c o s ( l - / 3 ) 0 *  - s i n ( 1 - / 3 ) 0 * ] .  [ J~  J ~ ]  

Lsin(1 - /3)0* cos(1 - /3)0* J LJ~ J*_]' 

(41) 

where J~ is the (i, j) component of ([J(CI))]T) -I .  
It should be noted that in (41), the exponent (1 - /3) < 0 

since the mapping size /3 is larger than 1. Thus, unlike the 
standard finite element solution, from (41), we can see that the 
strains at the singular points, calculated from the finite element 
solution obtained by using MAM, are infinity. This is because 
our solution by MAM resembles the exact solution near the sin- 
gularities. 

4.3, B 

The stresses are computed from the stress-strain relation. 
Usually the principal stress and the equivalent stress are of 
engineering interest. The eigenvalues of the following matrix 

I 0011 0012 1 

0"21 0022J 

are called the principal stresses and they will be denoted by O'cu 
and 00c2)- The lines which are perpendicular to the eigenvectors of 
this matrix are called the principal lines. 

In the case of plane stress, the third principal stress 0°(3) : 
0 and in the case of plane strain, 00c3) = v(00cn) + 00c2)). Now the 
equivalent stress is defined as 

5. NUMERICAL RESULTS 

In [28, 30] some comparisons were made between MAM 
and some of the best of alternative methods such as finite 
difference, finite element, and singular function methods. As 
benchmarks, elliptic problems having comer, jump boundary 
data, or interface singularity were considered. In comparisons 
given there, it was shown that MAM virtually requires no 
extra cost. Since CPU time comparisons for elasticity problems 
between MAM and alternative approaches are essentially the 
same as those in the previous papers, we only compare accuracy 
versus DOF between MAM and the conventional approach in 
the framework of the p-version of the finite element method. 

In the first two examples, the performance of the MAM in 
the framework of the p-version of the finite element method 
will be tested using the elasticity problems whose true solutions 
are known. In this section, all computations are for the case of 
plane stress. Recall the auxiliary mapping is defined by 

~,a(r, 0) = (r e cos(/30), r e sin(/30)). (42) 

The number/3 is called the mapping size of the auxiliary map- 
ping. Throughout this section, "with map" stands for the results 
obtained by applying MAM on Mesh I (the initial coarse mesh), 
shown in Fig. 5.1. "No map" stands for the results obtained 
by the standard finite element method on Mesh I without 
applying MAM. 

EXAMPLE 5.1. Suppose the tractions are free along the 
boundaries ot = _+rr in Fig. 3.1. Then by using a similar argu- 
ment given in Section 3.1, the smallest eigenvalue is A = 0.5 
and the corresponding stress functions are 
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%.~ "% 

oo 

FIG. 5.2. The stress 0 3 on [0, 1] x [-rr ,  rr]: (a) True stress, (b) computed stress by MAM, and (c) computed stress without using MAM. In cases (b) and 
(c), the numbers of degrees of freedom are the same and basis functions of order 8 are used. 

trx = )trY*-1){(2 - Q(A + 1))cos((A - 1)0) 

- (A - 1)cos((A - 3)0)} (43) 

o 3 = Ar~a-J~{(2 + Q(A + 1))cos((Z - 1)0) 
+ ()t - 1)cos(()t - 3)0)} (44) 

Z~y = Arl*-~l{(A - 1) sin((A - 3)0) 
+ a (A + 1) sin(()t - 1)0)}, (45) 

where )t = 0.5 and Q = 
Let us consider the equations of  elasticity on a domain ~ = 

{(x, y ) : - 2  --< x --< 2, - 2  --< y --< 2} shown in Fig. 5.1, with a 
crack along the negative x-axis, which is isotropic with material 
constants E = 1000 (modulus of  elasticity) and ~, = 0.3 (Pois- 
son 's  ratio). 

The traction functions given by (43)-(45)  are imposed along 
the entire boundary of  ~ ,  including both sides of  the crack. 
Furthermore, the following constraints are imposed: the dis- 
placement vector at (0, 0) is fixed and the y-components of  the 
displacement vector at (2, 0) is fixed. 

On the mesh shown in Fig. 5.1, M A M  is applied with map- 



202 OH AND BABUSKA 

(b) 

(c) 

FIG. 5.3. The stress T~ on [0, 1] × [-Tr, rr]: (a) True stress, (b) computed stress by using MAM, and (c) computed stress without using MAM. In cases 
(b) and (c), the numbers of degrees of freedom are the same and basis functions of order 8 are used. 

ping size 13 = 4. In order to show the effectiveness of MAM, 
Figs. 5.2 and 5.3 compare the true stress, the computed stress 
obtained by using MAM, and the computed stress by the stan- 
dard finite element method on [0, 1] × [-Tr, rr]. In Fig. 5.2, 
comparisons are for the stress o~,, while Fig. 5.3 compares the 
shear stress Z~.. From Fig. 5.2 and Fig. 5.3, one can see that 
MAM is quite effective in handling crack singularity. In other 
words, one can not see any difference between the true stress 
and the computed stress obtained by using MAM. However, 
there is significant difference between the true stress and the 
computed stress by the standard FEM. The stress tensor along 
the line y = 0.0129 are given in Table I. 

The crack singularity discussed in Example 5.1 is not too 
strong. Thus it is possible to obtain a practical solution by 
sufficiently refining the mesh on the domain 12~. However, as 
mentioned in Section 3.1, there are some elasticity problems 

containing singularities which are too strong for the mesh re- 
finement method to yield any practical solutions. 

In the next example, it will be shown that MAM can give 
an accurate solution even for those problems for which the mesh 
refinement method alone cannot yield any practical solutions. 

Although this paper is concerned with the equations of elas- 
ticity on polygonal domains, for brevity, we consider an elastic- 
ity problem on a sector region in the next example. 

EXAMPLE 5.II. Consider the equations of elasticity (12) and 
(13) in a wedge-shaped domain, 

l~'-~J={(r,O):r~2,-a_<O_<c~}, 0_<a_<9 0  °, 

which is isotropic with material constants E = 1000 and u = 
0.3. The displacement functions given below satisfy the equa- 
tions of elasticity in the domain o(-*~) ~ 2  
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TABLE I 

The Stress o'~ o~,., ~-~. along the Line y = 0.0129 

203 

x y True No map With map True No map With map True No map With map 

-0.40000 0.0129 0.05093822 0.04823590 0.05089369 0.00003312 -0.02967877 -0.00014424 -0.00123211 0.00510379 -0.00123076 
-0.34839 0.0129 0.06264135 0.15461398 0.06262561 0.00005368 0.03406785 -0.00003871 -0.00173954 -0.07977106 -0.00176440 
-0.29677 0.0129 0.07962216 0.22911948 0.07964541 0.00009401 0.09624285 0.00012811 -0.00259535 -0.13304302 -0.00265020 
-0.24516 0.0129 0.10593000 0.20079910 0.10599321 0.00018323 0.08994510 0.00034680 -0.00417904 -0.08602245 -0.00426194 
-0.19355 0.0129 0.15069789 0.05516336 0.15078407 0.00041800 -0.03752552 0.00063424 -0.00752793 0.08568925 -0.00762896 
-0.14194 0.0129 0.23883382 -0.05363119 0.23890443 0.00123034 -0.23020095 0.00132026 -0.01625616 0.26892630 -0.01635764 
-0.09032 0.0129 0.46349907 0.37045664 0.46355612 0.00587308 -0.15340532 0.00583234 -0.04945086 0.07111119 -0.04952390 
-0.03871 0.0129 1.48632567 2.41385925 1.48644065 0.09964524 1.07899882 0.10064434 -0.36327765 -1.38006892 -0.36333288 
-0.01290 0.0129 3.83449701 4.62512498 3.83435649 1.83132606 2.65316096 1.83542437 -2.41804125 -3.04412791 -2.41681990 

0.01290 0.0129 4.42121220 5.63512478 4.42443179 9.25729470 6.04753022 9.25774822 1.00158548 1.19976481 1.00025011 
0.03871 0.0129 4.52331891 4.53508576 4.52399697 5.24987421 4.78600541 5.25097506 0.69334021 0.73212362 0.69287164 
0.09032 0.0129 3.25283283 3.16439666 3.25273651 3.35173455 3.25907239 3.35178881 0.22881300 0.22695570 0.22885594 
0.14194 0.0129 2.62989437 2.47764699 2.62995116 2.66240669 2.52571398 2.66266548 0.11880174 0.05174389 0.11869870 
0.19355 0.0129 2.26172620 2.13848521 2.26183925 2.27678206 2.17434706 2.27711095 0.07513994 0.02115217 0.07496224 
0.24516 0.0129 2.01336763 1.95231425 2.01344754 2.02172571 1.97913221 2.02198072 0.05287338 0.03560597 0.05272972 
0.40000 0.0129 1.57929020 1.58108784 1.57924127 1.58175442 1.57152579 1.58166512 0.02545255 0.04008938 0.02552800 

Note. True (true stress), with no map (computed stress by the standard FEM) and with map (computed stress by using MAM). The computed stresses are 
obtained by using basis functions of order 8. 

r ~ 
u~(r, 0) = ~-~ {- ( ,~  + 1)/(0)} 

uo(r, 19) = ~ {-f ' (O)},  

(46) 

(47) 

where 

f (O)  = sin(h + 1)0 

90 ° 
A -  1 

O/ 

E 
G - -  - -  

2(1 + v)" 

The corresponding stress tensor components are 

~rr = rIA-I){(h + I) -- (A + I) 2} sin(h + I)0, 

cro = r<a-IIA(A + I) sin(A + I)0, 

~'ro = -ra-IA( A + I) cos(A + l)O. 

It is worth noting that uo = rr0 = 0 along the boundary 0 = 

_+a. Thus this problem could be solved so that the condition 

uo = 0 would be imposed by the proper combination of  u, 

and ur. Nevertheless, here we will impose the displacements 

(nonhomogeneous essential boundary conditions) along the en- 

tire boundary of  the domain. Let us note that the displacements 

are strongly singular at the vertex. In this example we show 

that our method performs very well even for this case. In the 

p-version of  FEM, used for this example, the essential boundary 

conditions are imposed by the/-,2 projection. Hence the error 

of  the method now includes also the error of  the approximation 

of  the boundary condition. Therefore, we have to expect that 

the strain energy will not necessarily be monotonically decreas- 

ing with p, the order of base functions, as it would be if the 

nonhomogeneous boundary condition would be satisfied ex- 

actly (See also Remark 5.1). Let us note that in all other exam- 

ples mentioned in this paper natural boundary conditions are 

used; hence the strain energies in Tables VI and IX are monoton- 

ically increasing with p. 

Let 12~ ~1 be the upper half of  12~ -*~ as shown in Fig. 5.4. 

Along the entire boundary of  1)~ ~1, the displacement functions 

in the x-y  coordinate system are imposed, 

Ux = ur cos 0 - uo sin 0 

u r = u~sin 0 +  UoCOS 0 

which correspond to the displacement functions (46) and (47) 

in the polar coordinate system. The singularity of  this problem 

can be as strong as desired by taking a close to 90 ° as shown 

in Fig. 3.2 and Table II. 

Furthermore, it is not difficult to show that 
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~u---zz = A h r  (~-I)sin(A - 1)0, 
Ox 

Ou--z = AAr a-I) cos(A - I)0, 
Oy 

Ovx _ Ahr(a_l) cos(A - 1)0, 
Ox 

OUx 
- A A r  a-~lsin(A - 1)0, 

Oy 

where A = - ( A  + 1)/(2G). Thus, for six representative wedge 
angles a = 50 °, 60 °, 70 °, 80 °, 85 °, 89 °, the true strain energy 
( l / 2 )~ ( {u . } ,  {U,x}), {u.} = {u.. Us} v, on the domain 12~ ~) are 

/2 

! x - a x i s  

(o, o ~ 0 ,  

~--C/ .  

On f~o,, ~((u.J)  

On D.~ 6°), O~((Uex}) 

On K~ 7°), ~({u~}) 

On f~8o,, olt({u~} ) 

On ~85), o~((u.} ) 

On O.~. "91, °R({u,x}) 

= 0.4457011132335915D-02 

= 0.1531526418625024D-02 

= 0.5573484518544861D-03 

= 0.1707470731728283D-03 

= 0.6899588499654107D-04 

= 0.1178312402203123D-04. 

Now l~s ~) = {(r, 0): r --< 1, 0 ~ 0 ~ or} C ~ )  is chosen as 
a singular region, a neighborhood of  the singular point (0, 
0), on which MAM will be applied. As was mentioned in 
Remark 3.2, 

Ux o ~0~, Uy o ~ 3  

are imposed along the boundaries 0* = 0 and 0* = odfl of 
(l~(s'~l) * = {(r*, 0*) : r*  -< 1, 0* -< or//3}. Here/3 is an optimal 
mapping size, 1/h = or(90 - o0. 

Throughout this paper, to measure the error of  the finite 
element solutions, we use the following definition: 

= - -  ''2 
II~IL k ~((u,~}) _1 (48) 

That is, it is the square root of  the difference between the true 
strain energy and the computed strain energy divided by the 
true strain energy. It was shown in [36] that II ll ,r is actually 
the relative error in the energy norm, provided that one of  
the following cases applies: all boundary conditions are either 
homogeneous Dirichlet or arbitrary Neumann boundary condi- 
tions; some Dirichlet boundary conditions are nonhomoge- 
nevus, but all other boundary conditions are either homoge- 
neous Neumann or homogeneous Dirichlet and the governing 
equations are homogeneous. Moreover, all examples in this 
section are one of  these cases. Hence in what follows we will 
call N I b  the relative error in the energy norm. 

For the various wedge angles or, the total strain energies on 
~ )  obtained by applying MAM on Mesh I, shown in Fig. 5.4, 

FIG. 5.4. The scheme of Mesh I and the domain fI!-+"L 

are given in Table III. The relative errors in the energy norm 
(%) are given in Fig. 5.6. By comparing with the true solutions, 
we can conclude that MAM is able to yield accurate solutions 
at virtually no extra cost, no matter how strong the singularities 
of  the problem are. 

In order to compare the results obtained by MAM with 
those obtained by the mesh refinement method, Mesh I of  four 
elements (see, Fig. 5.4.) are refined by putting circular layers 
of  radii o-, 0 -2, 0 -3, 0-4, 0.5, 0-6, 0-7, 0-8, centered at the origin, 
where o- = 0.15 (which is known to be an optimal geometric 
ratio for a geometric mesh refinement for the h-p version of  
FEM). The refined mesh obtained by putting 2, 3, 4 ..... 9 layers 
will be denoted by Mesh II, Mesh III, Mesh IV ..... and Mesh IX, 
respectively. These meshes have 6, 8, 10, 12 ..... 20 elements, 
respectively. For example, Mesh V is as shown in Fig. 5.5. 

The strain energy, obtained by applying the standard FEM 
with the refined Mesh V to the problems on the domain ~ )  
are given in Table IV. And their relative errors in the energy 
norm, NII~r, computed by using the true strain energy, are 
shown in Fig. 5.7. 

Remark 5.1. The energy reported in Tables III, IV, V are not 
monotone with p. This is caused by the fact that the boundary 
condition is imposed only approximately. For higher p this 
error has small influence and the energy decreases as it would 
occur if the (essential) boundary condition would be exactly im- 
posed. 

Table IV and Fig. 5.7 show that the mesh refinement method 

TABLE II 
The Eigenvalue A = 90°/or - 1 for Six Representative Wedge 

Angles ot 

o~ 50 ° 60 ° 70* 80 ° 85 ° 89 ° 

A 0.80000 0.50000 0.286714 0 .125  0.0588235 0.01124 
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T A B L E  III  

The  Strain Energies  on the Doma i n  12~ ~ for ~ = 50 °, 60 °, 70 °, 80 °, 85 °, 89 ° W h e n  M A M  Is Appl ied  
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p-deg DOF 50 ° 60 ° 70 ° 

1 
2 
3 
4 
5 
6 
7 
8 

p-deg 

2 0.4387492745431457D-02 0.1520859482894121D-02 0.5567345729310525D-03 
10 0.445688743952775 ID-02 0.1531572785147233D-02 0.5573874898294548D-03 
22 0.4457011922197191D-02 0.1531527952481516D-02 0.5573494680021682D-03 
42 0.4457011143393066D-02 0.1531526450827115D-02 0.5573484777837966D-03 
70 0.4457011132531040D-02 0.1531526419381477D-02 0.5573484525381751D-03 

106 0.4457011132340058D-02 0.15315264 18643714D-02 0.5573484518728477D-03 
150 0.4457011132336056D-02 0.1531526418625500D-02 0.5573484518549730D-03 
202 0.4457011132335964D-02 0.1531526418625041D-02 0.5573484518544919D-03 

DOF 80 ° 85 ° 89 ° 

1 2 
2 10 
3 22 
4 42 
5 70 
6 106 
7 150 
8 202 

0.1709561207603345D-03 
0.1705758614952583D-03 
0.1707473741570929D-03 
0.1707470816190254D-03 
0.1707470734116305D-03 
0.1707470731796349D-03 
0.1707470731730394D-03 
0.1707470731728518D-03 

0.6906812121402299D-04 
0.6899855353039026D-04 
0.6899596270247496D-04 
0.6899588725323426D-04 
0.6899588506198350D-04 
0.6899588499832774D-04 
0.6899588499647640D-04 
0.6899588499642211D-04 

0.1178639537517020D-04 
0.1178322837770610D-04 
0.1178312715834583D-04 
0.1178312411538886D-04 
0.1178312402485034D-04 
0.1178312402218292D-04 
0.1178312402211005D-04 
0.1178312402209949D-04 

can handle the weaker singularities. However,  it fails to give 
any practical solution of elasticity problems with very strong 
singularities such as the cases when a > 75 °. In order to show 
this fact vividly, the standard FEM is applied to the case when 
ot = 89 ° with further refined meshes; Mesh I, Mesh III, Mesh 
V, Mesh VII, and Mesh IX. The computed strain energies for 
those geometrically refined meshes are given in Table IV and 
Table V and their relative error in the energy norm are shown 
in Fig. 5.8. In this case, by the massive geometric mesh refine- 
ments, finite element solutions are improved a little bit. How- 
ever, the accuracy is not acceptable at all. In other words, the 
h-p version of the FEM fails for this problem. 

Remark 5.2. (1) Even though/3 = a / (90  - c~) is an optimal 

0 = C £  

O ct/2 

X-axis 
[ " 1 2 
I z, 0 . 1 5  
1 ~ 0 . 1 5  z 

! "-- 0 . 1 5 '  
I - ~ 0 . 1 5  4 

FIG. 5.5. The scheme of Mesh V on the domain 1~_ ~. 

mapping size for the problems on the domain f ~ ,  MAM with 
the other choice of mapping size yields approximate solutions of  
practical accuracy. Actually MAM with mapping size ( >  100) 
yields the relative error in the energy norm --<3% when the 
order of  basis functions is 8 and Mesh I is used for the problem 
on the domain 12~ 9~. 

(2) It is worth noting that MAM can handle the elasticity 
problems even when non-homogeneous essential boundary con- 
ditions are imposed on the boundaries of the neighborhoods of 
the singularities. 

In the first two examples, the smallest eigenvalues A were 

,,=, 
z 

U,l 

101 _ E ~ . . .  

 oO. 
- . . . . .  

1°'1 F ~ .  

2: """  ~.~")" , 

- - ~ - -  5oDe0 "~<b'..'~ 

, o3[- - - - " - - -  ,oo , ;  

FIG. 5.6. 
with Mesh I. 

101 10 2 

NUMBER OF DEGREES OF FREEDOM 

The relative error in the energy norm (%) when MAM is applied 
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TABLE IV 

The Strain Energy on the Domain ~=) Obtained by the Optimal Mesh Refinement, Mesh V 

p-deg DOF 50 ° 60 ° 70 ° 

1 10 0.4405670020540130D-02 0.1566487115006998D-02 0.6053103198646025D-03 
2 42 0.4457420260186373D-02 0.1534472170765279D-02 0.5647415490783892D-03 
3 78 0.4457064766350695D-02 0.1531924078512398D-02 0.5606895925910377D-03 
4 138 0.4457017168219616D-02 0.1531597705602884D-02 0.5597224836509342D-03 
5 222 0.4457011931428601D-02 0.1531546547014034D-02 0.5591135803203382D-03 
6 330 0.4457011249116450D-02 0.1531535988017260D-02 0.5587320835784172D-03 
7 462 0.4457011150167903D-02 0.1531531515488644D-02 0.5582454129703971D-03 
8 618 0.445701 I 135802711D-02 0.1531529449633110D-02 0.5579538617159367D-03 

p-deg DOF 80 ° 85 ° 89 ° 

1 10 
2 42 
3 78 
4 138 
5 222 
6 330 
7 462 
8 618 

0.2889017640162947D-03 
0.2534095506899352D-03 
0.2473114711669522D-03 
0.2445714254542476D-03 
0.2337583505325639D-03 
0.2253173665961850D-03 
0.2092777698103482D-03 
0.1981310492965937D-03 

0.3576618879140340D-03 
0.3505035342285137D-03 
0.3607138018058794/9-03 
0.3701802501488918D-03 
0.3375931456911586D-03 
0.3105604155630747D-03 
0.2447446052984088D-03 
0.1968803334211282D-03 

0.6182592096409667D-03 
0.7129742782372550D-03 
0.7936052278053867D-03 
0.8591464052345034D-03 
0.7918101347523176D-03 
0.7325557688296332D-03 
0.5464419176391876D-03 
0.4054869521310821D-03 

known.  Thus ,  it was  poss ib le  to c h o o s e  an op t ima l  m a p p i n g  

size /3 = 1/A. H o w e v e r ,  in eng inee r i ng  pract ices ,  the  exac t  

e igenva lues ,  w h i c h  r ep resen t  the  in tens i ty  o f  s ingular i t ies ,  are 

no t  k n o w n  in advance .  The  next  two e x a m p l e s  d e m o n s t r a t e  

tha t  M A M  succeeds  in y ie ld ing  good  a p p r o x i m a t e  so lu t ions  

e v e n  for  these  cases.  

EXAMPLE 5.111. Le t  us cons ide r  the  equa t ions  o f  e las t ic i ty  

on  a d o m a i n  113 s h o w n  in Fig. 5.9, w h i c h  is i so t ropic  wi th  
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FIG. 5.7. The relative error in the energy norm (%) on the domains 
11~ *) for ot = 50, 60, 70, 80, 85, 89 when the p-version of FEM is applied with 
Mesh V. 

ma te r i a l  cons tan t s ;  E = 1000 and  v = 0.3. S u p p o s e  the  b o u n d -  

ary cond i t i ons  are g iven  as fo l lows:  

( I )  u, = 0, u, = 0 (f ixed) a long  F, U Fz, 

(2) T, = 10, T, = 2 a long  F5, 

(3) T, = 0, T, = 0 ( t rac t ion f ree)  a long  012\(F, U F2 U Fs). 

T h e n  it fo l lows  f r o m  the  a r g u m e n t s  in Sec t ion  3.1 tha t  this  

T A B L E  V 

The Strain Energies on the Domain ll~z s9) Obtained without 
Applying MAM 

p-deg DOF Mesh I DOF Mesh III 

1 2 
2 10 
3 22 
4 42 
5 70 
6 106 
7 150 
8 202 

p-deg DOF 

0.8348764761969085D-03 
0.8363598689554478D-03 
0.9184008854068470D-03 
0.9931577497683493D-03 
0.9137775851488808D-03 
0.8430069500300520D-03 
0.6223823176457848D-03 
0.4550174531945867D-03 

Mesh VII 

6 
26 
50 
90 

146 
218 
406 
510 

DOF 

0.6720055342291412D-03 
0.7753691417481764D-03 
0.8631892906394158D-03 
0.9345644101368223D-03 
0.8612360703348015D-03 
0.7967076857397165D-03 
0.5940288770994173D-03 
0.4405282879009032D-03 

Mesh IX 

1 14 0.5688829276912590D-03 16 0.5235413474168798D-03 
2 58 0.6556907603472391D-03 72 0.6030890129562007D-03 
3 106 0.7297117726166816D-03 132 0.6710403386777638D-03 
4 186 0.7898923442515647D-03 232 0.7262984181673099D-03 
5 298 0.7280587060296026D-03 372 0.6695176825383317D-03 
6 442 0.6736470524085897D-03 552 0.6195529458233573D-03 
7 618 0.5027442583422036D-03 772 0.4626180089851831D-03 
8 826 0.3733095376025999D-03 1032 0.3437619833159763D-03 
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FIG. 5.8. The relative error in the energy norm (%) when the h-p version 
of the finite element method is applied for the problem on the wedge domain 
~ "  of ~ = 89 ° . 

problem has singularities at the crack tip P,(0, 0) and the corner 
P2(2, 2). Moreover, suppose the body force is zero, that is, 
{f} = {0, 0}v; then min{Re(Aj)} are approximately 0.3 and 0.7 
at P,(0, 0) and P2(2, 2), respectively. 

For the finite element approach, we construct two meshes, 
Mesh I and Mesh II, on D, as shown in Fig. 5.10. Mesh II is 
obtained from Mesh I by putting layers of  radii 0.5, 0.5o-, 0.5o -2, 
0.5o .3 centered at P~ and layers of  radii 0.5, 0.5o-, 0.5o -2 centered 
at P2, where o- = 0.15. Mesh I and Mesh II have 22 and 48 
elements, respectively. In Example 5.III, we use the mapping 
size/3 = 6 and/3 = 2 on the singular regions S, = {(x, y) :]](x, 
3') - (0, 0)1[ <-- 0.5} and $2 = {(x, y):ll(x, y) - (2, 2)11 -< 
0.5}, respectively. 

In Example 5.III, "with m a p "  stands for the results obtained 
by applying MAM on Mesh I. " N o  m a p "  and " 4 8 E L "  stand 
for the results obtained by the standard finite element method 

2 0.5 0.5 2 0.5o" 0.5o" 
I I I I t '  I I I 

(b) 

FIG. 5.10. (a) Mesh I (22 elements); (b) Mesh I1 {48 elements). 

on Mesh I and Mesh II, respectively, without applying MAM. 
The total strain energy obtained by these three ways is listed 
in Table VI. 

By applying the extrapolation approach given in Chapter 4 
of [36] to the second column of Table VI and the fourth column, 
DOF, of  Table VII, we obtain °//(u,,,) = 2.113815563245032, 
the computed true total energy. 

Table VII is the relative error in strain energy (%) computed 

TABLE VI 

Total Strain Energy on f~3 When the Body Force Is Zero 

p-deg With map 48EL No map 

I 1.702132029810480 1.656404349217337 1.231603737683330 
2 2.061010428583605 2.018717728104414 1.605510783438384 
3 2.093985634086386 2.063320794501468 1.736330296578600 
4 2.110046396546211 2.082748318204508 1.815186503511321 
5 2.113129774277219 2.089615423359967 1.864716288927604 
6 2.113560741772014 2.093441297022001 1.899152183780876 
7 2.113727076747088 2.096139989799332 1.925085281651720 
8 2.113785840066801 2.098163679729239 1.945329260774251 
9 2.113804271632455 

( -2 ,  2 )  

i 

Free F 4 

Free 

F 3 

Fz 

(o,o) Sxed FI 
F 7 Free 

F6 

Fs 

(2 ,  2 )  

Fixed 

(2 ,  O) 

Free 

( -2 ,  - 2 )  (2 ,  - 2 )  

FIG. 5.9. The domain D,~ and the line segment L which is on the straight 

line y = x(tan z'/8). 

TABLE VII 

Relative Errors in the Energy Norm (%) and Degree of Freedom 
for the Cases in Table VI 

p-deg With map No map DOF 48EL DOF 

1 44.131 64.603 38 46.517 92 
2 15.805 49.038 120 21.209 280 
3 9.686 42.259 226 15.456 488 
4 4.223 37.587 376 12.123 792 
5 1.801 34.328 570 10.700 1192 
6 1.098 31.867 808 9.818 1688 
7 0.647 29.880 1090 9.144 2280 
8 0.375 28.232 1416 8.605 2968 
9 0.231 1786 
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T A B L E  V I I I  

Equivalent Stress (o'e) the Disp lacement  (U: x -Displacement)  along the Line L in Fig. 5.9 

With map No map 48EL 

r U o-, U o-, U o-, 

0.9 6.836D-6 4.421 -2.153D-4 3.945 - 1.361D-5 4.375 
0.8 2.516D-4 5.897 - 1.243D-6 5.234 2.280D-4 5.833 
0.7 5.075D-4 7.762 2.226D-4 6.874 4.806D-4 7.678 
0.6 7.695D-4 10.147 4.501D-4 8.972 7.391D-4 10.038 
0.4 1.289D-3 17.647 8.953D-4 15.504 1.252D-3 17.452 
0.3 1.535D-3 24.220 1.090D-3 21.029 1.493D-3 23.936 
0.2 1.754D-3 35.811 1.250D-3 31.129 1.705D-3 35.338 
0. I 1.908D-3 64.809 1.292D-3 52.415 1.848D-3 63.761 

-0.1 2.003D-2 44.053 1.547D-2 36.843 1.963D-2 43.508 
-0 .2  2.253D-2 26.962 1.891D-2 23.818 2.218D-2 26.716 
-0.3 2.430D-2 20.401 2.072D-2 20.083 2.397D-2 20.217 
- 0 . 4  2.576D-2 16.809 2.251D-2 14.149 2.546D-2 16.687 
-0 .6  2.831D-2 12.881 2.524D-2 12.135 2.803D-2 12.791 
-0.7 2.949D-2 11.660 2.650D-2 I 1.066 2.921D-2 11.636 

Note. For these computations, basis functions of order 8 are used. 

by applying the computed true energy to Table VI. And they 
are plotted in Fig. 5.11. 

In this example, the displacements vary within very small 
ranges. Hence we cannot see a clear distinction between "with 
map" and "no map" when their graphs are plotted. However, 
the differences are clear when the stresses are compared. As 
an example, the x-component (U) of the displacement and the 
equivalent stress (o'e) at the points (r, rr/8), for r = 0.9, 0.8, 
0.7, 0.6, 0.4, 0.3, 0.2, 0.1, and -0 .1 ,  -0 .2 ,  -0 .3 ,  - 0 . 4 , - 0 . 6 ,  
- 0 . 7  along the line y = x tan(It/8) are listed in Table VIII. 

The equivalent stresses along the line L (see, Fig. 5.9), given 

in Table VIII, for three cases are plotted in Fig. 5.12. In case 
of applying MAM, the basis functions resemble the true solution 
around the singularities; hence the stresses near the singularity 
at P~(0, 0) are very large. Actually, the equivalent stress at 
P~(0, 0) is infinity. We plotted the graph of the equivalent 
stresses on ~ ,  = [ - 2 ,  - 2 ]  × [ - 2 ,  -0 .1 ]  in Fig. 5.13, where 
the x-grid and y-grid sizes are 0.2 and 0.1, respectively. In this 
example, the equivalent stress of "with map" is much bigger 
than "no map" near the singularity at P~(0, 0). One can note 
this fact from Fig. 5.13. 

The equivalent stresses along the line L (see, Fig. 5.9), given 
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FIG. 5.11. Relative error in the energy norm (%) for the domain l l  3 
containing two comer singularities. 
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FIG. 5.12, The equivalent stress along the line L shown in Fig. 5.9. The 
scale on the horizontal axis represents the radius r of the polar coordinates (r, 
rr/8) of the points on L. For these computations, basis functions of order 8 
are used. 
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o. % .. % 

(~) (b) 

FIG. 5.13. The graph of equivalent stress on l ) ,  = [ - 2 ,  2] x [ - 2 ,  -0.1]:  (a) No map; (b) with map. The x-grid and the y-grid sizes are 0.2 and 0.1, 
respectively. The order of basis functions used for this computation is 8. 

in Table VIII,  for three cases are plotted in Fig. 5.12. In MAM, 
the basis functions resemble the true solution around the singu- 
larities, hence the stresses near the singularity at P~(0, 0) are 
very large. Actually, the equivalent stress at P,(0, 0) is infinity. 
We plotted the graph of the equivalent stresses on f~.  = [ - 2 ,  
- 2 ]  × [ - 2 ,  -0 .1 ]  in Fig. 5.13, where the x-grid and y-grid 
sizes are 0.2 and 0.1, respectively. In this example, the equiva- 
lent stress of  "with  m a p "  is much bigger than "no  m a p "  near 
the singularity at P~(0, 0). One can see this fact from Fig. 5.13. 

So far we have considered the corner singularities on iso- 
tropic elastic bodies. However,  the interface singularity caused 
by an abrupt change in material properties in an elasticity 
problem has a structure similar to that of  the corner singularity. 
However,  the interface singularities are usually more complex 
and stronger than the corner singularities. In order to show that 

MAM can also handle this type of singularity, our next example 
concerns an elasticity problem with two interfaces. 

EXAMPLE 5.IV. Consider the equations of  elasticity on the 
domain f~4 shown in Fig. 5.14 that is composed of three isotropic 
materials. That is, ~4 = ~4~ U f~42 U f~43, and the material 
constants on each subdomain are given in the following table: 

On ~t~) On D~2 On f~43 

E 1000 10 1000 
0.1 0.001 0.3 

We also assume that it has a nonzero body force, {f} = {10, 
1000} T. 

This interface problem has singularities at P~(0, 0), P2(2, 2), 

(-2, 2) 

Free 

(2, 2) 
Fixed 

~43 ~ ~41 

Free 1o, Ol Free (-2, O) (2, O) 

Free 

(-2, 2) (2, 2) 

(-2, 1) 

IO, o) 

(2, 1) 

(-2, O) (-1, O) (1, O) (2, O) 

FIG. 5.14. The domain ~4 for the interface problem with two interfaces. FIG. 5.15. A mesh for using MAM on the domain ~4 with two interfaces. 
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TABLE IX 

TotalS~ain Energy ~rthelnteffaceProblem 

p-deg B = (8, 10, 10) B = (5, 10, 10) DOF 

1 123032.2828452089 123284.2678773375 38 
2 150287.7980849437 152583.4051500356 116 
3 158804.9631362990 159786.2535574225 210 
4 161232.7426132401 161314.8716586071 344 
5 161708.1813612756 161697.6525341540 518 
6 161749.2509783793 161745.8457528930 732 
7 161760.1348046330 161758.1355019662 986 
8 161761.8532415435 161760.3221783005 1280 
9 161762.9347649495 161761.8908487467 1614 

p-deg /3 = (5, 5, 5) /3 = (1, 1, 1) DOF 

TABLE X 

The Relative Error in the Energy Norm (%) and Degree of 
Freedom for the Cases in Table IX 

p-deg /3=  (8, 10, 10) /3 = (5, 10, 10) /3 = (5, 5, 5) /3=  {I, 1, 1) DOF 

I 48.933 48.773 53.173 80.050 38 
2 26.637 23.825 26.300 67.491 116 
3 13.529 11.062 13.492 62.869 210 
4 5.740 5.280 9.940 59.685 344 
5 1.887 2.052 7.952 57.277 518 
6 1.010 1.110 6.645 55.347 732 
7 0.590 0.690 5.705 53.743 986 
8 0.492 0.580 4.996 52.377 1280 
9 0.418 0.490 1614 

1 116027.58299108 58106.6173116895 38 
2 150578.57685495 88079.9225407295 116 
3 158821.08704690 97828.5205550101 210 
4 160167.37006738 104140.5899691367 344 
5 160742.79149754 108695.2364448717 518 
5 161051.55851408 112211.9290644471 732 
7 161239.18068546 115041.7425766592 986 
8 161361.96325978 117386.4326246329 1280 

and P3( -2 ,  2). Thus we choose the neighborhoods Sj of  the 
singularities as follows: Sj = {(x, y) : II(x, Y) - PAl -< 0.5}, j = 
1, 2, 3. A mesh on ~4 that is compatible with these neighbor- 
hoods of the singularities are shown in Fig. 5.15. 

The success of  the MAM depends on the choice of  the 
mapping size /3 of the auxiliary mapping. In our method, a 
circular sector, S = {(r, 0 ) :0  -< 0 -< 00, r --< r0}, is mapped 
onto S* = {(r*, 0") : 0 -< 0* -< 00//3, r* -< r~/~}, by the mapping 
~ - t ( r ,  0) ----- rt/~(COS 0//3, sin 0//3). Thus, if the mapping size, 
/3, is very large then the mapped region will consist of  very 
narrow circular sector elements. Nevertheless the convergence 

1 0  z 

theorem given in the previous section still holds since these 
elements satisfy the maximal angle condition [3] which allows 
one angle to be arbitrarily small. ~_ 

In this example, "/3 = (/31, /32, /33)" means the results ob- ~- 
u l  

tained by applying MAM with the auxiliary mappings of  size z 
/3,,/32,/33 for the singular regions S~, $2, $3, respectively. In = 10' 
particular, "/3 = (1, 1, 1)" stands for the case when no mapping " 0 
technique is used. The total strain energy obtained by the vari- ,,." 
ous choices of  mapping sizes are listed in Table IX. ta 

W 

As before, extrapolating the second column of Table IX gives 
_,1 
u J  
r," 10  ° %(uex) = 161765.7679239559 

as the computed true total energy. 
Table X is the relative error in strain energy (%) computed 

by using this true energy and Table IX. And these relative 
errors versus the number of  degrees of  freedom are plotted in 
Fig. 5.16. 

Due to the large body force, we can see a big distinction 
between/3 = (8, 10, 10) and/3 = (1, 1, 1) even in the displace- 
ments. The graphs of the y-displacement for the two cases,/3 = 
(8, 10, 10) and/3 = (1, 1, 1), are plotted in Fig. 5.17. Once 
again, the stresses obtained by using MAM are larger than the 
stresses obtained by the standard FEM at the neighborhoods 
of singularities. Numerical experiments show that the singulari- 
ties at P2(2, 2) and P3( -2 ,  2) are much stronger than that at 
P~(0, 0). 

From Table IX and Table X, we can conclude that the map- 
ping size/32 = 5 is not big enough for the singularity at P2. 
On the other hand, experiments show that the mapping sizes 
/3~ = 10 and/32 = 15 are too big for the singularities at P, and 
P2, respectively. 

Remark 5.3. In all cases except the second example we 
had natural boundary conditions and, hence, the energy in- 
creases with p. 

FIG. 5.16. 
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Relative error in the energy norm (%) for the interface problem. 
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Oo oo 

(~) (b) 

FIG. 5.17. The graph of the )'-displacement over fl = [-2, 2] × [0, 2]: (a) No map: (b) with MAM. The x-grid and )'-grid sizes are 0.2 and 0.1, respectively. 
The order of basis functions used for this computation is 8. 

If  an oversized auxiliary mapping (i.e./3 >> (min{Re(A)}) -t) 
were used in MAM, then one cannot see the expected improve- 
ment until the polynomial  degree is of  high order. It was shown 
in [8] that if larger mapping size is selected, then one must 
choose higher degree basis polynomials  to get large improve- 
ment in accuracy. Hence, from a practical point of view an 
optimal choice for the mapping size at each singular region is 
[3 = (min{Re(Aj)}) -~. Thus, in order to obtain optimal results 
from MAM, it is desirable to know the eigenvalues A at each 
singularity. Actually,  it can be computed by solving trigonomet- 
ric equations given in Section 2.1 for the comer  singularity or 
by using the computer code given in [31] for the interface 
singularity. Even if  we do not have prior knowledge of  the 
eigenvalues, MAM, using an auxiliary mapping of  any size 
/3 > 1, will always yield a large improvement.  In fact, since 
an oversized auxiliary mapping yields better results than under- 
sized auxiliary mapping (unless the basis functions are of  very 
low degree), it is better to start with a large /3, for example 
/3 = 10 in such a case. Another possibil i ty is to use different 
strengths of  mappings and to select the one which leads to the 
largest strain energy. 

6. CONCLUDING REMARKS 

M A M  can efficiently handle the plane elasticity problems 
containing such singularities as comer  and interface singulari- 
ties. No matter how strong the singularities of  the solution are, 
M A M  yields an accurate solution at virtually no extra cost if  
the structures of  the singularities are known. Actually M A M  

can handle the elasticity problems which cannot even be solved 
by the h-p version of the finite element method. In applying 
MAM, optimal results can be obtained if the structures of the 
singularities are known. However, even if there is no prior 
knowledge about the singularities, M A M  can yield very reason- 
able solutions to any plane elasticity problem with singularities. 

REFERENCES 

I. Babu]ka and 
I. Babugka and 
I. Babu~ka and 
I. Babu~ka, B. 
515 (1981). 

1. J. E. Akin, Int. J. Numer. Methods Eng. 10, 1249 (1976). 

2. J. E. Akin, Elements for the Analysis of  Line Singularities, The Mathematics 
of Finite Elements with Applications, Vol. 3, edited by J. R. Whiteman, 
(Academic Press, London, 1979). 

3. I. Babugka and A. K. Aziz, SlAM J. Numer. Anal. 13, 214 (1976). 
4. I. Babugka and B. Guo, SIAM J. Numer. Anal. 25, 837 (1988). 
5. I. Babu~ka and B. Guo, Methods Appl. Mech. Eng. 74, 1 (1989). 
6. I. Babu~ka and B. Guo, SIAMJ. Math. Anal. 19, 172 (1988). 
7. I. Babu~ka, B. Kellogg, and J. Pitkfiranta, Numer. Math. 33, 447 (1979). 
8. I. Babu~ka and H.-S. Oh, Numer. Methods Part Differential Equations 6, 

371 (1990). 

9. M.R. Rosenzweig, Numer. Math. 20, 1 (1972). 
10. M. Suri, SIAM J. Numer. Anal. 24, 750 (1987). 

11. M. Suri, Math. Modelling Numer. Anal. 21, 199 (1987). 
12. A. Szabo, and I. N. Katz, SIAM J. Numer. Anal 18, 

13. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North- 
Holland, Amsterdam, 1978). 

14. W. Gordon and C. Hall, Int. J. Numer. Meth. Eng. 7, 461 (1973). 
15. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Lon- 

don, 1985). 



212  OH AND BABUSKA 

16. W. Gui and I. Babu~ka. Numer. Math. 49, 577 (1986). 

17. W. Gui and I. Babu~ka, Numer. Math. 49, 613 (1986). 

18. W. Gui and I. 13abugka, Numer. Math. 49, 659 (1986). 

19. B. Guo and I. Babu~ka, Comput. Mech. 1, 21 (1986). 

20. B. Guo and I. Babugka, Comput. Mech. 1, 203 (1986). 

21. B. Guo and H. S. Oh, Int. J. Numer. Meth. Eng. 37, 1741 (1994). 

22. G. Fix, S. Gulati, and G. I. Wakoff, Z Comput. Phys. 13, 209 (1973). 

23. H. Han, Numer. Math. 39, 39 (1982). 

24. J. A. Hendry and L. M. Delves, Z Comput. Phys. 33, 33 (1979). 

25. S. N. Karp and F. C. Karal, Commun. Pure Appl. Math. 15, 413 (1962). 

26. R. B. Kellogg, Appl. Anal. 4, 101 (1975). 

27. V. A. Kondrat'ev, Trans. Moscow Math. Soc. 16, 227 (1967). 

28. T. R. Lucas and H.-S. Oh, J. Comput. Phys. 108, 327 (1993). 

29. Z. C. Li and R. Mathon, Math. Comput. 54, 41 (1990). 

30. H.-S. Oh and I. Babugka, Comput. Methods Appl. Mech. Eng. 97, 211 
(1992). 

31. P. Papadakis, Doctoral dissertation, University of Maryland, 1989. 

32. V. Z. Patton and P. I. Perlin, P.I. Mathematical Methods of the Theory of 
Elasticity, Vol. 1, (MIR, Moscow, 1984). 

33. E. Rank and I. Babu~ka, h~t. Z Numer. Methods Eng. 24, 2087 (1987). 

34. M. Stem, Int. J. Numer. Methods Eng. 14, 409 (1979). 

35. G. Strang and G. Fix, An Analysis of the Finite Element Method (Prentice- 
Hall, Englewood Cliffs, NJ, 1973). 

36. B. Szab6 and I. Babu~ka, Finite Element Analysis (Wiley, New York, 1990). 

37. R. W. Thatcher, Numer. Math. 25, 163 (1976). 

38. G. Tsamasphyros, bzt. J. Numer Methods Eng. 24, 1305 (1987). 


